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Abstract. Current persistent storage implementations of large bio-ontologies fall short
in meeting usability and reusability requirements. Limitations are demonstrated with
two representative ontologies-stored-in-databases, the Gene Ontology and the Founda-
tional Model of Anatomy. Their un-usability for granular information retrieval is not due
to a lack of knowledge modelled in the respective ontologies, but stems from sub-optimal
implementations how the ontologies are made persistent. We discuss and propose sev-
eral improvements for ontology development, including support for recursive queries,
insufficiencies in and improvements for ontology development environments, and finer-
grained specification of goals of an ontology. Advantages of a better implementation are
illustrated with granularity based querying. This granular information retrieval enables
both retrieving more information quicker and can be used for improving and enlarging
an ontology.

1 Introduction

The added-value of ontologies has been reiterated many times over, but at present,
its effective usage falls short of the promises. Ontologies are not intended just for
storing knowledge about the subject domain, browsing and (manual) annotation of
data, but can be used for data integration, inferencing, Semantic Web agents medi-
ation, ought/will be more than just an online encyclopaedia and so forth. While, of
course, it is first a challenge to develop a good ontology, and a second to use it effec-
tively, but how the captured knowledge is stored persistently affects what one can do
with the ontology, despite the implementation-independence claim. In fact, the latter
should be more precisely formulated: the knowledge modelled in an ontology should be
implementation-independent, whereas the storage method commits to certain types of
implementations. For instance, OWL files can be used for reasoning purposes to e.g.
classify a taxonomy and check consistency, whereas this is not possible with ontolo-
gies stored in a (relational) database. On the other hand, relational databases have
about 30 years of established research and implementations behind them, where one
can take advantage of e.g. sophisticated querying. Taking into account ontology as an
engineering artifact, then implementation decisions for ontology development are not
trivial.
? A shorter version of the experiments but with more information about granularity was presented at

the SBIOLBD Seminar at EPFL, Lausanne, Switzerland, d.d. 13-2-2006, with an extended abstract
available at http://www.meteck.org/files/SBIOLBD06 extabs.pdf.
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In addition, over the years there always is a ‘requirements slip’: desiring to use an
engineering artifact for other purposes it was originally designed for and users moving
the goal posts. For instance, data/information retrieval from ontologies – getting out
what has been put in the ontology – with as a sub-goal granularity, i.e. querying
an ontology at one’s desired different levels of detail, which goes further than the
“retrieve ancestors”-type of query. Querying an ontology stored in a database at the
desired level of detail can be done ‘on the fly’ with database views that return e.g.
all subtypes of tissue that reside in the Tissue-level, or with a full formal domain
granularity framework respecting ontological differences in types of granularity [14]
that contains different perspectives on the data or ontology, has its granular levels for
each perspective predefined, and may be used for inferencing. A conceptually relatively
simple method is to position a taxonomy and partonomy orthogonally and to use
the partOf relation (or spatial containedIn, involvedIn for processes) to distinguish
between levels of granularity. With this combination, one can structure and retrieve
more information from the same resource that is otherwise available in the ontology
but inaccessible.

With ontologies stored in databases, such change in content and structure of the
queries, is, in theory, not a problem. However, with current engineering practices this
is not possible, or only after elaborate reengineering. Two well-known large ontologies
stored in relational databases are the Gene Ontology (GO) with more than 19,000
entities [7] and the Foundational Model of Anatomy (FMA) with about 72,000 entities
and 1.9 million relations [16], which we analyze and discuss in the next section. We
have chosen these two ontologies-stored-in-databases, because the GO is a de facto
trendsetter for the Open Biomedical Ontologies (OBO) family of ontologies and the
FMA is the frontrunner for expressive ontologies created with the Protégé ontology
development environment. These ontologies are widely used for annotation but rarely
used for ontology-driven information systems [8]. The issues that will be brought afore
in the next section, however, are not unique, but representative of the challenges ahead
and design considerations to take into account to bring ontologies to the next level to
facilitate effective usage, which also has the advantage of being able to improve the
ontologies themselves, discussed in section 3. We conclude in section 4.

2 Case studies: experiments with the GO and FMA

2.1 The GO database

Common types of queries of the GO in the DAG-Edit tool [31], AmiGO web page [30],
or directly to its database are “find string x” in the tree, definition, comment, id, etc.,
or the supertype or sibling of x ; querying for “descendants only” is problematic, as it
relies on an implementation of recursive queries. The recursive query in SQL:1999 is
defined using common table expressions as temporary views:

WITH [ RECURSIVE ] <query alias name> [ ( <column list> ) ]
AS ( <select query> )
<query using query alias name>

The interested reader can find examples of recursive queries in database fora on the
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Web, where options are limited with the numbering scheme of the nodes, and perfor-
mance tends to be ‘slow’ (e.g. [2] [19] [25]). Neater solutions than will be discussed
here for the GO can be achieved with ‘advanced databases’ such as deductive data-
bases, databases with Strudel/StruQL, and DL databases that both support recursive
queries [26] [1]. SQL:1999 and SQL:2003 both also do support recursive queries, which
are more or less implemented in currently available DBMSs, such as DB2 and Oracle.
This can be combined with generating database views to construct a particular gran-
ular level containing data. Let Table 1 be the table Producer level, then querying
the column Entity1 or Entity2 for the root entity at the desired depth in the tree
returns the contents for a chosen level. For instance, if Entity2 = ‘ToxinProducer’
corresponds to D in Table 1, then all entities it subsumes belong to that level. Using
the sample data of Table 1, then the basic view is:

CREATE VIEW TheToxinProducers level2D AS
SELECT entity1 FROM Producer WHERE entity2 = ‘D’;

Together with the recursive query support, all its subtypes are also loaded into the
ToxinProducer -level. Without support for recursive queries, only one type of gran-
ularity can be used: that of isA, where not only each layer in the taxonomic tree
constitutes a level but also only those in the same branch of the tree. If the relation
would not be isA but partOf , then views for each level can be constructed straight-
forwardly by retrieving only the immediate parts:

CREATE VIEW Producer level3E AS
SELECT entity1 FROM Producer WHERE entity2 = ‘E’;

Table 1. Sample data for a table that stores a partonomy, called Producer level.

Entity1 Relation Entity2

E isA D

F isA D

G isA E

H isA D

I isA E

J isA E

... isA ...

Shortcuts can bypass recursive queries, as, for instance, the ontology-stored-in-a-
database Gene Ontology (GO) does. The GO MySQL database itself does not support
recursive queries (required for traversing trees), but offers a workaround with the ad-
ditional graph path table. In graph path, “Paths between any two terms (traversing
down only) this table states whether there exists a path between a parent and a
child, and the distance between them. multiple paths mean multiple entries in this
table” [34]. Querying a section of the biological process GO [33] with the sample
query of [34] using ancestor.name = ’blood coagulation’ and adding ORDER BY
graph path.distance ASC, then

SELECT rchild.name, rchild.acc, graph path.distance
FROM term AS rchild, term AS ancestor, graph path
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WHERE graph path.term2 id = rchild.id
AND graph path.term1 id = ancestor.id
AND ancestor.name = ’blood coagulation’

ORDER BY graph path.distance ASC;
gives the output as in Table 2 (data from v3-8-2005 of the geneontology.obo (BP)),
having fetched every descendant of BloodCoagulation by listing the descendants with
distance to the assigned root instead of maintaining the hierarchical structure. A
DAG-Edit “descendants only” can be retrieved by selecting

has ancestor that equals blood coagulation which returns an unordered set with-
out the distances retrieved with the SQL query. Problematic is that distance puts
together any type of relation: the in-/extrinsic pathways of blood coagulation are tax-
onomic subtypes whereas the other entities are part of blood coagulation. Utilising
the taxonomy and partonomy separately or orthogonally is as of yet not possible with-
out losing such crucial information. Hence, although the knowledge is stored in the
database, the limited query answer is ontologically meaningless. To allocate entities
correctly in the appropriate level of granularity, one requires a (depth-first) algorithm
that during the search uses and returns the type of relation that is traversed. The
translations of the GO database to make it browsable through Protégé or convert it
into OWL-format does not automatically solve these issues, as will be described in
the next sections.

Table 2. Output for fetching descendants of Blood coagulation in GO, using the database query.

Name acc Distance

blood coagulation GO:0007596 0

platelet activation GO:0030168 1

regulation of blood coagulation GO:0030193 1

blood coagulation, intrinsic pathway GO:0007597 1

blood coagulation, extrinsic pathway GO:0007598 1

positive regulation of blood coagulation GO:0030194 2

negative regulation of blood coagulation GO:0030195 2

fibrinolysis GO:0042730 3

2.2 The FMA database

2.2.1 Introduction

One can browse the FMA online [32] and search for a single entity, or get the
database dump and install MySQL and Protégé to browse its contents locally through
the Protégé software, which does not allow SQL database queries. The FMA data-
base is tightly integrated with, and entirely dependent on, the Protégé application
software, which is revealed not only upon inspecting the database dump, but even
clearer after reverse engineering the conceptual model (with VisioModeler 3.1), shown
in Fig. 1, which is devoid of semantics. For instance the ‘short value‘ varchar(255)
default NULL in the definition of the FMA table may record values, among others, like
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‘English’, ‘31227’, and ‘Thu Aug 12 11:30:30 PDT 1999’, as illustrated in Fig 2
with a section of the database dump. The FMA MySQL database as distributed by
the FMA developers is difficult to query as all knowledge is hidden in the applica-
tion layer (Protégé) the database is supposed to be connected to: in addition to the
attribute name as e.g. slot value, the actual values in most other columns are num-
bers where mapping from number to string and meaning is not provided. Browsing the
FMA in Protégé, one has to click each individual relation and navigate through the
myriad of pop-up screens to find information. Finding the answer to a simple query
like “how many organs does a human have?” is impossible, assuming one does not
want to browse and count manually thousands of organ types in Protégé.

 

Fig. 1. Reverse engineered ORM conceptual model of the FMA database.

However, not all is lost. The purpose of this experiment is to illustrate how an ap-
plied domain granularity framework can be used with FMA and queried meaningfully.
This engineering solution for the FMA, OQAFMA and as offered by its developers,
does not allow full implementation of a domain granularity framework, but even in its
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Fig. 2. Screenshot of a section of the FMA database dump with values to be inserted in its core table
FMA. The marked text are some of the values of the column declared as ‘short value‘ varchar(255)

default NULL,

current form achieves more than IFOMIS’ unsuccessful attempt to test their levels of
granularity for human structural anatomy [15] with the FMA in Prolog1.

The OQAFMA is a query agent for the FMA, that uses StruQL for querying the
re-engineered database that stores the FMA ontology [16]. OQAFMA does not use
the MySQL database in which the FMA is stored directly, but first performs several
preprocessing steps before one can query the database. This combination has been
re-engineered into a format usable for querying: the OQAFMA query agent [16]. Pre-
processing steps involve optimizations such as the creation of a new table for each
edge (relation) type, adding views and storing it in a PostgreSQL database [16], and
can be queried through an online interface [35] using the StruQL query language that
returns the answer in XML for further processing (e.g. visualization). Before testing
OQAFMA features to support granular queries, several queries were formulated in
natural language, bearing in mind how domain granularity for human anatomy may
be defined with organ-tissue-cell-organelle and so forth based on the FMA partonomy,
as shown in Table 3 (It is outside the scope of this technical report to go into details
of ontological soundness of the levels and its contens, and of the notion of granularity
in a granularity hierarchy2, but not declared and hard coded in the database. Details
about the materials and methods are provided in the next section.

1 The recursive functions in particular caused some problems (Werner Ceusters, personal communi-
cation June 2005).

2 First, the ontological (un)soundness of the presented level definition, naming, and allocation of the
entities in their respective levels. For instance, the FMA contains Hormone as structural entity,
but it is a functional one (structurally, it can be a peptide like insulin). Second, the granularity
in a granularity hierarchy to ‘skip’ levels where one may identify in reality more levels than used
in the software system, like gphsagl2 collapses three levels into one. Both [23] and [29] achieved
better performance with software implementation using wider and shallower levels of granularity
than with fewer perspectives that had more detailed levels; this is a topic of future research.
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Table 3. Granular perspective gphsa human structural anatomy and nine defined levels with some
examples.

Levels Name Examples

gphsagl1 Body MaleBody

gphsagl2 Principal body part Head, Limb
Subdivision of principal body part LimbGirdle, Face
Organ system RespiratorySystem

gphsagl3 Organ SalivaryGland, Pancreas

gphsagl4 OrganPart Tendon, Cortex, LymphNode

gphsagl5 Tissue Epithelium, SmoothMuscle

gphsagl6 Tissue part HairFollicle, Nail

gphsagl7 Cell MultiPotentStemCell, Melanocyte

gphsagl8 Cell part Chromosome, Cytoskeleton

gphsagl9 Molecule Hormone, Protein, Melanin

2.2.2 Materials and methods

Relating the inaccessible but intuitively assumed FMA structure to domain granu-
larity and some simple data manipulation operators, then for this experiment a granu-
lar level corresponds to one layer in the partonomy that has, by using assignGrainLevel,
loaded into that level the relevant part of the taxonomy. For instance, the Cell -level
contains the entity Cell and all entities that are (taxonomically) subsumed by it. I
do not introduce new relations to the FMA but exploit the existing encodings. The
getLevel(HumanStructuralAnatomy) traverses the extant partOf relations and re-
turns the top common subsumer in the taxonomic structure residing in a level, e.g.
Organ, OrganPart etc. Firing getContents(Cell) corresponds to a recursive StruQL
query that includes the statement

CellLevel->":DIRECT-SUBCLASSES"*->CellSubclasses
which returns all subtypes of Cell residing in the Cell -level. Further details on posi-
tioning the taxonomy and partonomy are given below.

An online query interface has been created for OQAFMA [35], and was used for
the experiments, using Internet Explorer 6.0 accessing from a remote machine. Before
testing, four queries were formulated in natural language, which are as follows:
I. Continuing with the running example about blood, the query is: “what are the

cellular components of blood?”, which can be decomposed into smaller tasks where
Blood resides in another level as the cells it has as parts. In addition, we want to
retrieve not an unordered set of blood cells at the Cell -level, but taxonomically
structured.

II. The query “which cell type(s) do(es) not have a nucleus as part?” involves adja-
cent levels of granularity, being the Cell -level and SubcellularOrganelle-level in the
human structural anatomy perspective.

III. “Which hormones are located in the kidney, and where in the kidney?” This uses
two different perspectives, being a structural one for Kidney (an organ) with its
parts and a functional one for Hormone (a molecule with a specific function).

IV. Last, “In which organs are macrophages located?”, i.e. for each macrophage (and
its subclasses), in which tissue (or its subclasses) is it located?
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These questions were translated into StruQL3, where possible, and the database
queried through the OQAFMA interface to retrieve the result in XML format. Al-
though one can use the XML output with other software, not provided with the
OQAFMA query agent, in order to generate a graphical display, the results – if any
– were manually processed because this was more time effective due to the small size
of the query answers.

2.2.3 Results and discussion

Query I
The first query can be reformulated as shown in Table 4. The first part provides map-
pings required for use in the WHERE clause and the CREATE clause says what to return
as the query answer, “+” is the closure operator following the specified type of relation
an arbitrary number of times, and a “*” combines the “+” with the optional operator
“?” for path alternation [16], hence it also supports recursive queries. A section of
the XML result is included in Table 5, which in the real answer contains 40 entities4

from the FMA that are not greyed-out in Fig 3. The FMA list of parts that are cells
(as accessed with Protégé) is graphically depicted with a checkbox after the entity,
amounting to 12 types of cells. Obviously, the FMA/Protégé parts list is incomplete
and positioning the taxonomy orthogonally automatically does reveal the lacunas in
the FMA/Protégé list. This also indicates the difficulty of constructing a parts list de
novo in contradistinction to querying the extant modelled knowledge. Thus, through
combining existing encoded information differently by using granularity of the subject
domain in formulation of the query, one can retrieve or discover ‘new’ information
that otherwise would have remained inaccessible and hidden in the database. Put dif-
ferently: there is more information captured in the FMA than meets the eye when
only browsed with Protégé. Considering the query answer has 40 entities as opposed
to the incomplete 12 listed in FMA/Protégé, one can use database querying for verifi-
cation of, and finding gaps in, the FMA contents as a first step. Following this, it can
be useful to investigate the possibilities to use this approach to aid (semi-)automatic
creation of new relations in the FMA.

Separate from this emerge some design considerations. Should one include in the
parts list all ‘intermediate’ entities, only the leaves, or maybe only the shared common
ancestor? For instance, only Reticulocyte, Echinocyte and MatureErythrocyte, or also
their common subsumer Erythrocyte, or only Erythrocyte but not its subtypes? The
answer depends on the goal(s) one wants to achieve: leaves only, minimal amount of
(top-level) parts, or to be able to reconstruct the relevant section of the taxonomic
tree? Deciding either way will improve reliable querying of the FMA. A second design
consideration is that one may prefer that an end-user is allowed to browse the FMA
though a nice interface only, whereas querying may be more suitable for developers. On
the other hand, querying the FMA allows much more flexibility for different domain

3 I acknowledge the helpful suggestions from Peter Mork in writing the queries.
4 I am not sure about the ontological status of Lymphoblast, i.e. if it is really part of blood; lym-

phoblasts are proginetors of lymphocytes and might be part of the LymphaticSystem instead. See
also the discussion of Query IV on phased sortals.
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experts to retrieve desired information in a wider range of scenarios, hence increasing
usefulness of the FMA. Furthermore, the XML output obtained from OQAFMA easily
can be ported to a GUI tool to make an appealing graphical visualisation such that
one can have the best of both: powerful querying and an appealing interface for the
domain expert.

Table 4. OQAFMA query to retrieve the parts of Blood that are cells.

StruQL syntax for Query I

Blood binds to the symbol for blood.

Cell binds to the symbol for cell.

BloodCellPart binds to all parts of the blood that are cells.

BloodCellPartSubclasses binds to the subclasses thereof.

Result binds to the human-readable name of these symbols.

WHERE

Blood->":NAME"->"Blood",

Blood->"part"+->BloodCellPart,

BloodCellPart->":DIRECT-SUPERCLASSES"+->Cell,

Cell->":NAME"->"Cell",

BloodCellPart->":DIRECT-SUBCLASSES"*->BloodCellPartSubclasses,

BloodCellPartSubclasses->":NAME"->Result

CREATE

BloodShouldContain(Result)

Query II
Querying “which cell type does not have a nucleus as part?” is for illustrative purpose
to mention that such negation is not possible with OQAFMA. StruQL does support
negation when NOT is combined with a atomic boolean expressions or a member-
ship expressions [5], and assumes a closed-world assumption. In contradistinction, the
FMA takes an open-world assumption because it is incomplete in representing human
anatomy knowledge, hence absence of a relation between entities does not mean it
does not exist in reality, only that there is no such relation defined in the FMA. Sec-
ond, negation is not used in the FMA, hence no relation has been defined alike not
hasPart Nucleus: this is textually addressed with naming terms, like Non-nucleated
cell5 to categorise those cells that do not have as part a nucleus. Also GALEN’s
GRAIL formalism does not deal properly with negation, but uses terms like “pres-
ence” and “absence” as a workaround. To use GALEN’s workaround in the FMA, one
has to have for the non-nucleated cell a predicate alike isAbsent Nucleus, or in DL:
NonNulceatedCell

.= Cell u ∀isAbsent.Nucleus.

Query III
The third query contains as test item the combination of two granular perspectives:
structural and functional human anatomy. This is supposedly not possible, as the
FMA contains only structural parts. However, the latter is not true: several functional
entities are included in the FMA. Philosophically it is debatable [12] if functions exist
5 Solution of this negation issue is being investigated (Anand Kumar, personal communication 30-

8-2005).
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Fig. 3. Difference in query answers on of Query I : Protégé/FMA browsing for blood cells (indicated
with check-boxes) and OQAFMA answer (in black).
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Table 5. Section of the output of Query I with OQAFMA, without the taxonomic structure of the
blood cells.

<results>
<BloodShouldContain>
<Result>Reticulocyte</Result>
</BloodShouldContain>
<BloodShouldContain>
<Result>Echinocyte</Result>
</BloodShouldContain>
<BloodShouldContain>
<Result>Mature erythrocyte</Result>
</BloodShouldContain>
...
<BloodShouldContain>
<Result>Delayed type hypersensitivity-related T lymphocyte</Result>
</BloodShouldContain>
...
<BloodShouldContain>
<Result>Interleukin 2-activated natural killer cell</Result>
</BloodShouldContain>
</results>

at all and if yes what their nature is; one may prefer an ontological trade-off that
aside from its ongoing investigations, one assumes their existence as perceived by
biologists and correct or update its representation at a later date, if deemed neces-
sary. Regarding the FMA, at the level of BiologicalMacromolecule6, it contains entities
such as hormones (Epinephrine, Estrogen,Melatonin etc), receptors (= protein with
a specific function) like DihydropyridineReceptor, and other functional molecules like
SignalRecognitionParticle (a ribonucleoprotein), and BiogenicPeptide with its sub-
types (like Vasopressin and Insulin). The adherence to the structural perspective is
better in the higher levels of granularity, although not always correct. For instance, the
note in the Pancreas “clinical part” section mentions “Exocrine and endocrine need
to be transferred to functional concepts”, and of the two organ systems that have
a definition, RespiratorySystem is a “Functional system which consists of structures
involved in respiration” (emphasis added). The other organ system with a definition
is CardiovascularSystem defined as “Organ system which consists of the heart, the
systemic and pulmonary arterial and venous system, the lymphatic and the portal
venous system.” hence defined as a structural system. Even if one were to define a
granular perspective for functional anatomy, then there still remains the lacuna to
be filled to link the functional entities subsumed by BiologicalMacromolecule as part
of higher-level entities as well as relating them as structural parts of coarser-grained
entities, as none of the molecules are part of anything in the current version (of 2003).

6 BiologicalMacromolecule is ontologically an incorrect label, as molecules are first subdivided into
organic or anorganic – not biological and non-biological – and ‘macro’ has a fiat boundary; in
addition, the FMA definition is inconsistent as it states that a macromolecule is build up from
certain listed smaller molecules, but those molecules are also subsumed by BiologicalMacromolecule.
It is beyond the scope to elaborate on this further here, but BiologicalMacromolecule should be
read as OrganicMolecule, or at a later date with an extended FMA, be simply labeled as Molecule.
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For these reasons, any query similar to Query III cannot return an answer that is
correct with respect to reality – querying the system with OQAFMA and using a
closed-world assumption, then the empty set it returns as query answer is correct for
the presently encoded knowledge in the FMA.

Query IV
Retrieving the types of organ residing in the Organ-level that has as part a type of
macrophage in the Cell -level faces several problems. Table 6 depicts the StruQL query
and Table 7 the query answer. Note that it is not required to include the label with the
type of macrophage in the result; in fact, the correct CREATE argument for the for
Query IV is CREATE OrganWithMacrophages(OrganSubclassesName), which returns
Liver only, but the additional information is included for illustrative purpose. Except
for HepaticMacrophage in the Liver, discovered during querying with OQAFMA and
not when browsing the FMA in Protégé, the FMA lacks any relation from other
types of macrophages to other entities (except for subtyping), even though in reality
macrophages are located in/part of organs. Second, the FMA is phased sortal ignorant,
which complicates the question: individual Monocyte cells that are part of blood ‘dock’
in tissue and due to the changes in micro-environment switch on/off genes resulting
in other behaviour and morphology [28] [24] [20] and are then called instances of
Macrophage; the scientific community does neither agree on the terminology nor on
the status of the affected cells [11] [22]. From an ontological analysis viewpoint, it is
clear that the monocyte/macrophage is a phased sortal (refer to [9] [10] for further
information on phased sortals). Regardless phased sortalness of the entity, assuming
the FMA contains all relations relevant for human structural anatomy, and using
database technology that supports recursive queries, one can retrieve the answer.
Query IV realises more advanced information retrieval compared to Query I : for
each iteration, the query’s high-level evaluation strategy is to traverse the taxonomic
structure for macrophages as well as the isA for organs, then it checks if there is an
orthogonally positioned partOf path between any of the entities in the two sub-trees.

Table 6. OQAFMA query to retrieve organs that have as part a (subtype of) Macrophage.

Query for macrophages in organs

WHERE

Macrophage->":NAME"->"Macrophage",

Macrophage->":DIRECT-SUBCLASSES"+->MacrophageSubclasses,

MacrophageSubclasses->":NAME"->MacrophageSubclassesName,

Organ->":NAME"->"Organ",

Organ->":DIRECT-SUBCLASSES"+->OrganSubclasses,

OrganSubclasses->":NAME"->OrganSubclassesName,

OrganSubclasses->"part"+->MacrophageSubclasses

CREATE

OrganWithMacrophages(OrganSubclassesName, MacrophageSubclassesName)

It is worth noting that the FMA is at present one of the most comprehensive bio-
ontologies, but it is incomplete both regarding the relations between entities and
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Table 7. OQAFMA result for the query in Table 4.7.

Macrophages in organs

<results>
<OrganWithMacrophages>
<MacrophageSubclassesName>Hepatic macrophage</MacrophageSubclassesName>
<OrganSubclassesName>Liver</OrganSubclassesName>
</OrganWithMacrophages>
<results>

particularly concerning the Cell -level and below, although it is arguable if molecules
belong in the subject domain – the present FMA cut-off ‘level’ is BiologicalMacro-
molecule7. The issue with negation is to be implemented correctly as well. Positioning
orthogonally the structural and functional anatomy granular perspectives is an out-
standing task in its entirety. With this in place, one can query for e.g. the types of
hormones residing in the kidney.

3 Discussion

Two main issues are ontology development and diversification of usage of ontologies.
In the past few years, much emphasis in (bio-)ontologies has been, and is being, put on
ontological correctness of the modeled subject domain (e.g. [10, 21]), which is certainly
still an important issue. However, how an ontology is to be made persistent for both
off-line and online use has received much less attention, possibly because it ought not
matter, although in practice it does.

3.1 Engineering

Looking at alternatives for storing ontologies in databases, adoption of OWL and
RDF as standard ontology languages has its advantages concerning data and ontology
interoperability, and ontology integration is facilitated when they are written in the
same language. Also, its reasoning support is a welcome addition to improve ontol-
ogy development. On the other hand, expressivity of query languages for both OWL
and RDF lags behind relational database query languages. For instance, OWL-QL
‘merges’ network protocol approaches with querying distributed OWL-based knowl-
edge bases [6], which is useful for the Semantic Web, but this is not necessarily a main
query aim of a bio-ontology. RDF query languages include SPARQL [38] (a W3C
draft), RQL [36] [13] and SeRQL [37]. SPARQL focuses on sub-graph isomorphisms
for query answering of RDF graphs in databases, but for recursive queries it relies on
7 The principal investigator Cornelius Rosse is convinced it does and that it is a part yet to be

developed properly (personal communication, 1-5-2005). I am convinced that cell biology and bio-
chemistry are separate disciplines in the core life sciences and that if one wants to use it for human
anatomy (an applied life science, like the other specialisations in biomedicine), it is better to de-
velop the former separately and afterwards to use those sections applicable to human anatomy, but
not that human anatomy does or should take precedence. This because if the subcellular entities
are ordered first to fit human anatomy, it will be less (or even: not) generic and less/not reusable
for other subject domains, which is contrary to one of the purposes of developing an ontology.
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SQL (and e.g. StruQL) and the DBMSs that support it. RQL supports “recursive
traversal of class and property hierarchies (for advanced pattern-matching)” of trees
with arbitrary depth [36]. SeRQL is a variation on RQL, and both return a bag as
query answer [13], although with an additional construct one can rebuild the tree [37].
However, paths have to be specified with query formulation and RQL thus cannot
‘discover’ the path(s) between e.g. some macrophage and an organ. This considered,
storing large ontologies in (relational) databases is a sensible option. It has an ad-
ditional advantage when one desires to develop interoperable software and integrate
databases, because querying over ontologies-stored-in-databases with data-databases
is easier. But for this to realise, it is essential to have the ontology stored in a good
database. A good database, as one can learn already in undergraduate courses in
database development [18], has a meaningful conceptual model and ensures there is a
separation of the database layer from the application layer in order to achieve relative
implementation independence, thereby increasing reusability and simplifying mainte-
nance of both. Unfortunately, FMA/Protégé meets neither. A workaround may be
to generalise Mork et al’s pre-processing operations [16], but this has to be carried
out for each Protégé-database, therefore it will be more efficient and user-friendly if
the Protégé software already takes care of this by modifying the development envi-
ronment to map frames and slots to meaningful conceptual models. For instance, to
create separate entities/relations in an ER or ORM model for each type of relation
in the ontology and giving meaningful names to widely used attributes that end up
in separate table columns, such as ‘comment’, ‘language’, ‘user’ and so forth. Aside
from desirable optimization, an advantage is that then one can define database views
for each granular level to simplify granular querying. For instance, the Organ-level
will contain all taxonomic subtypes of Organ, and the tuples and values for the leaves
in the taxonomic tree can be counted automatically and we would finally know how
many organs we have.

A separate issue is the use of RDBMS. A common characteristic of ontologies
are their hierarchical structures, be it taxonomies, partonomies, or e.g. a hierarchy of
developsFrom. In this setting, recursive queries are necessary for useful information re-
trieval. SQL:1999 supports recursive queries, which has been gradually implemented
in extant RDBMSs like Oracle, DB2, MS SQL, and in deductive databases. While
MySQL is freely available, it lacks support for recursive queries, which may not be
an issue when focusing on ontology creation and enlargement only, but is a serious
limitation if one actually wants to use the ontology to go beyond finding an entity or
retrieve an ambiguous distance to other entities.

3.2 Diversification of use

The demand for recursive queries brings afore the second point: diversification of uses
of ontologies. Ontologies are not just an inert repository, even if the ontology is a
reference ontology: if it offers nothing more than an online encyclopaedia, then why
put in the effort to build the ontology? An encyclopaedia cannot answer questions
like which macrophages are part of some organ, or be able to anticipate other ad hoc
peculiar questions like hormones located in the kidney or molecules in the mitochon-
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drion. An ontology can, provided it is implemented in a usable format. Ontologies can
– and should – have a variety of uses (e.g. [3] [4] [17] [27]), which has to be taken into
account during the development stage. Top-level ontologies may not need computa-
tional support as they are intended to guide modelling decisions off-line, but developing
ontology-mediated query formulation and information retrieval, such as utilising the
encoded knowledge better through granular queries, requires run-time access to the
ontology. At present, this is not possible with the GO and FMA/Protégé implemen-
tations, but is with the reengineered-FMA OQAFMA. With the current engineering
limitations, offering an ontology in several storage formats (RDF, OWL, XML, etc.)
to simplify its use and reuse to match the desired task can be a feasible approach,
with the preconditions to have a clear versioning system in place and informing the
user what is lost or gained with one storage format compared to the other. Applying
this to the FMA case study, the gain one obtains with OQAFMA is that it has ‘added’
the semantics of the application layer to the database such that one can examine the
information contained in the FMA more easily and comprehensively, experiment with
e.g. applied domain granularity to explore its contents in a novel way, and enables
wider use and reuse of the FMA to, for instance, link it with other ontologies at the
subcellular levels or query medical data through this ontology. Aside from this, now
having the opportunity to position orthogonally the taxonomy with the partonomy is
useful for discovering lacunas and inconsistencies shown in the browsers and can be
used for semi-automatic addition of the newly suggested relations.

Aside from information retrieval scenarios and sophisticated querying, the desire
for and offers of ‘reasoning support’ for ontologies is underspecified: what exactly is
available where and what type of reasoning does the user want/need? Automation
for classification of a taxonomy, automated instance categorization, tree comparisons,
test a hypothesised theory or relation for satisfiability, finding missing relationships,
more? A finer-grained goal specification as part of the requirements analysis process
will not only help deciding how one best can store the ontology with the presently
available technology, but also provide an impetus for logicians and software developers
to address and solve the most pressing users’ needs first.

4 Conclusions

Current persistent storage implementations of large bio-ontologies fall short in meet-
ing usability and reusability requirements. Some main limitations were demonstrated
with two representative ontologies-stored-in-databases: the Gene Ontology and the
Foundational Model of Anatomy. The Gene Ontology is in its current database for-
mat not usable for performing advanced querying. Comparing browsing the FMA in
Protégé with OQAFMA querying, the latter is certainly a useful improvement, es-
pecially for testing the information contained in the FMA and to experiment with
applied domain granularity in a relatively easy manner to explore and illustrate its
potential. However, intersecting – or positioning orthogonally – taxonomic relations
with the partonomy currently is more promising for finding lacunas and inconsisten-
cies and may be used for possible (semi-)automatic addition of the newly suggested
relations than to retrieve reliable, consistent, and complete information.
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Improvements are possible with regards to ontology development environment soft-
ware, taking into account general database development good practice, using RDBMSs
that support expressive and recursive queries, and finer-grained specification of goals
of what the ontology and system it may be part of are and may be intended for. We
demonstrated the added-value of a variation of querying, granularity, which, by avail-
ing of extant database technology and implementation (OQAFMA), enables retrieval
of more information quicker and can be used for improving and enlarging an ontol-
ogy compared to the more common bio-ontology usage and implementations stored in
relational databases.

Using applied domain granularity with other ontologies, a fully specified domain
granularity framework, and the functions defined in the preceding paragraphs will
take even more work and time to realise. Current and future work involves improving
ontology usage and developing granularity further to provide a reliable and reusable
framework for granular information retrieval.
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